Go的临时对象池sync.Pool

今天在写码之时,发现了同事用到了sync.pool。因不知其因,遂Google之。虽然大概知道其原因和用法。还不能融汇贯通。故写此记,方便日后查阅。直至明了。

正文:

在高并发或者大量的数据请求的场景中,我们会遇到很多问题,垃圾回收就是其中之一(garbage collection),为了减少优化GC,我们一般想到的方法就是能够让对象得以重用。这就需要一个对象池来存储待回收对象,等待下次重用,从而减少对 象产生数量。我们可以把sync.Pool类型值看作是存放可被重复使用的值的容器。此类容器是自动伸缩的、高效的,同时也是并发安全的。为了描述方便, 我们也会把sync.Pool类型的值称为临时对象池,而把存于其中的值称为对象值。这个类设计的目的是用来保存和复用临时对象,以减少内存分配,降低 CG压力。

我们看下Go的源码:

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
 
package sync
 
import (
 "internal/race"
 "runtime"
 "sync/atomic"
 "unsafe"
)
 
// A Pool is a set of temporary objects that may be individually saved and
// retrieved.
//
// Any item stored in the Pool may be removed automatically at any time without
// notification. If the Pool holds the only reference when this happens, the
// item might be deallocated.
//
// A Pool is safe for use by multiple goroutines simultaneously.
//
// Pool's purpose is to cache allocated but unused items for later reuse,
// relieving pressure on the garbage collector. That is, it makes it easy to
// build efficient, thread-safe free lists. However, it is not suitable for all
// free lists.
//
// An appropriate use of a Pool is to manage a group of temporary items
// silently shared among and potentially reused by concurrent independent
// clients of a package. Pool provides a way to amortize allocation overhead
// across many clients.
//
// An example of good use of a Pool is in the fmt package, which maintains a
// dynamically-sized store of temporary output buffers. The store scales under
// load (when many goroutines are actively printing) and shrinks when
// quiescent.
//
// On the other hand, a free list maintained as part of a short-lived object is
// not a suitable use for a Pool, since the overhead does not amortize well in
// that scenario. It is more efficient to have such objects implement their own
// free list.
//
type Pool struct {
 local    unsafe.Pointer // local fixed-size per-P pool, actual type is [P]poolLocal
 localSizeuintptr        // size of the local array
 
 // New optionally specifies a function to generate
 // a value when Get would otherwise return nil.
 // It may not be changed concurrently with calls to Get.
 New func() interface{}
}
 
// Local per-P Pool appendix.
type poolLocal struct {
 private interface{}  // Can be used only by the respective P.
 shared  []interface{} // Can be used by any P.
 Mutex                // Protects shared.
 pad    [128]byte    // Prevents false sharing.
}
 
// Put adds x to the pool.
func (p *Pool) Put(x interface{}) {
 if race.Enabled {
 // Under race detector the Pool degenerates into no-op.
 // It's conforming, simple and does not introduce excessive
 // happens-before edges between unrelated goroutines.
 return
 }
 if x == nil {
 return
 }
 l := p.pin()
 if l.private == nil {
 l.private = x
 x = nil
 }
 runtime_procUnpin()
 if x == nil {
 return
 }
 l.Lock()
 l.shared = append(l.shared, x)
 l.Unlock()
}
 
// Get selects an arbitrary item from the Pool, removes it from the
// Pool, and returns it to the caller.
// Get may choose to ignore the pool and treat it as empty.
// Callers should not assume any relation between values passed to Put and
// the values returned by Get.
//
// If Get would otherwise return nil and p.New is non-nil, Get returns
// the result of calling p.New.
func (p *Pool) Get() interface{} {
 if race.Enabled {
 if p.New != nil {
 return p.New()
 }
 return nil
 }
 l := p.pin()
 x := l.private
 l.private = nil
 runtime_procUnpin()
 if x != nil {
 return x
 }
 l.Lock()
 last := len(l.shared) - 1
 if last >= 0 {
 x = l.shared[last]
 l.shared = l.shared[:last]
 }
 l.Unlock()
 if x != nil {
 return x
 }
 return p.getSlow()
}
 
func (p *Pool) getSlow() (x interface{}) {
 // See the comment in pin regarding ordering of the loads.
 size := atomic.LoadUintptr(&p.localSize) // load-acquire
 local := p.local                        // load-consume
 // Try to steal one element from other procs.
 pid := runtime_procPin()
 runtime_procUnpin()
 for i := 0; i < int(size); i++ {
 l := indexLocal(local, (pid+i+1)%int(size))
 l.Lock()
 last := len(l.shared) - 1
 if last >= 0 {
 x = l.shared[last]
 l.shared = l.shared[:last]
 l.Unlock()
 break
 }
 l.Unlock()
 }
 
 if x == nil && p.New != nil {
 x = p.New()
 }
 return x
}
 
// pin pins the current goroutine to P, disables preemption and returns poolLocal pool for the P.
// Caller must call runtime_procUnpin() when done with the pool.
func (p *Pool) pin() *poolLocal {
 pid := runtime_procPin()
 // In pinSlow we store to localSize and then to local, here we load in opposite order.
 // Since we've disabled preemption, GC can not happen in between.
 // Thus here we must observe local at least as large localSize.
 // We can observe a newer/larger local, it is fine (we must observe its zero-initialized-ness).
 s := atomic.LoadUintptr(&p.localSize) // load-acquire
 l := p.local                          // load-consume
 if uintptr(pid) < s {
 return indexLocal(l, pid)
 }
 return p.pinSlow()
}
 
func (p *Pool) pinSlow() *poolLocal {
 // Retry under the mutex.
 // Can not lock the mutex while pinned.
 runtime_procUnpin()
 allPoolsMu.Lock()
 deferallPoolsMu.Unlock()
 pid := runtime_procPin()
 // poolCleanup won't be called while we are pinned.
 s := p.localSize
 l := p.local
 if uintptr(pid) < s {
 return indexLocal(l, pid)
 }
 if p.local == nil {
 allPools = append(allPools, p)
 }
 // If GOMAXPROCS changes between GCs, we re-allocate the array and lose the old one.
 size := runtime.GOMAXPROCS(0)
 local := make([]poolLocal, size)
 atomic.StorePointer((*unsafe.Pointer)(&p.local), unsafe.Pointer(&local[0])) // store-release
 atomic.StoreUintptr(&p.localSize, uintptr(size))                            // store-release
 return &local[pid]
}
 
funcpoolCleanup() {
 // This function is called with the world stopped, at the beginning of a garbage collection.
 // It must not allocate and probably should not call any runtime functions.
 // Defensively zero out everything, 2 reasons:
 // 1. To prevent false retention of whole Pools.
 // 2. If GC happens while a goroutine works with l.shared in Put/Get,
 //    it will retain whole Pool. So next cycle memory consumption would be doubled.
 for i, p := range allPools {
 allPools[i] = nil
 for i := 0; i < int(p.localSize); i++ {
 l := indexLocal(p.local, i)
 l.private = nil
 for j := range l.shared {
 l.shared[j] = nil
 }
 l.shared = nil
 }
 p.local = nil
 p.localSize = 0
 }
 allPools = []*Pool{}
}
 
var (
 allPoolsMuMutex
 allPools  []*Pool
)
 
funcinit() {
 runtime_registerPoolCleanup(poolCleanup)
}
 
funcindexLocal(l unsafe.Pointer, i int) *poolLocal {
 return &(*[1000000]poolLocal)(l)[i]
}
 
// Implemented in runtime.
funcruntime_registerPoolCleanup(cleanupfunc())
funcruntime_procPin() int
funcruntime_procUnpin()

sync.Pool 最常用的两个函数Get/Put

var pool = &sync.Pool{New:func()interface{}{return NewObject()}}
    pool.Put()
    Pool.Get()

对象池在Get的时候没有里面没有对象会返回nil,所以我们需要New function来确保当获取对象对象池为空时,重新生成一个对象返回,前者的功能是从池中获取一个interface{}类型的值,而后者的作用则是把 一个interface{}类型的值放置于池中。

// 建立对象
var pool = &sync.Pool{New:func()interface{}{return "Hello,xiequan"}}
// 准备放入的字符串
val := "Hello,World!"
// 放入
pool.Put(val)
// 取出
log.Println(pool.Get())
// 再取就没有了,会自动调用NEW
log.Println(pool.Get())

再来看一个例子:

package main
 
import (
    "fmt"
    "runtime"
    "runtime/debug"
    "sync"
    "sync/atomic"
)
 
funcmain() {
    // 禁用GC,并保证在main函数执行结束前恢复GC
    deferdebug.SetGCPercent(debug.SetGCPercent(-1))
    var countint32
    newFunc := func() interface{} {
        return atomic.AddInt32(&count, 1)
    }
    pool := sync.Pool{New: newFunc}
 
    // New 字段值的作用
    v1 := pool.Get()
    fmt.Printf("v1: %vn", v1)
 
    // 临时对象池的存取
    pool.Put(newFunc())
    pool.Put(newFunc())
    pool.Put(newFunc())
    v2 := pool.Get()
    fmt.Printf("v2: %vn", v2)
 
    // 垃圾回收对临时对象池的影响
    debug.SetGCPercent(100)
    runtime.GC()
    v3 := pool.Get()
    fmt.Printf("v3: %vn", v3)
    pool.New = nil
    v4 := pool.Get()
    fmt.Printf("v4: %vn", v4)
}

通过Get方法获取到的值是任意的。如果一个临时对象池的Put方法未被调用过,且它的New字段也未曾被赋予一个非nil的函数值,那么 它的Get方法返回的结果值就一定会是nil。Get方法返回的不一定就是存在于池中的值。不过,如果这个结果值是池中的,那么在该方法返回它之前就一定 会把它从池中删除掉。

这样一个临时对象池在功能上看似与一个通用的缓存池相差无几。但是实际上,临时对象池本身的特性决定了它是一个“个性”非常鲜明的同步工具。我们在这里说明它的两个非常突出的特性。

来看一个syscn.pool和bytes.Buffer使用的例子:

type Dao struct {
 bp      sync.Pool
}
 
funcNew(c *conf.Config) (d *Dao) {
 d = &Dao{
 bp: sync.Pool{
 New: func() interface{} {
 return &bytes.Buffer{}
 },
 },
 }
 return
}
 
 
func (d *Dao) Infoc(args ...string) (valuestring, errerror) {
 if len(args) == 0 {
 return
 }
 // fetch a buf from bufpool
 buf, ok := d.bp.Get().(*bytes.Buffer)
 if !ok {
 return "", ErrType
 }
 // append first arg
 if _, err := buf.WriteString(args[0]); err != nil {
 return "", err
 }
 for _, arg := rangeargs[1:] {
 // append ,arg
 if _, err := buf.WriteString(defaultSpliter); err != nil {
 return "", err
 }
 if _, err := buf.WriteString(strings.Replace(arg, defaultSpliter, defaultReplacer, -1)); err != nil {
 return "", err
 }
 }
 value = buf.String()
 buf.Reset()
 d.bp.Put(buf)
 return
}

在实现过程中还要特别注意的是Pool本身也是一个对象,要把Pool对象在程序开始的时候初始化为全局唯一。

对象池使用是较简单的,但原生的sync.Pool有个较大的问题:我们不能自由控制Pool中元素的数量,放进Pool中的对象每次GC 发生时都会被清理掉。这使得sync.Pool做简单的对象池还可以,但做连接池就有点心有余而力不足了,比如:在高并发的情景下一旦Pool中的连接被 GC清理掉,那每次连接DB都需要重新三次握手建立连接,这个代价就较大了。

总结:

对象池的一些适用场景(比如作为临时且状态无关的数据的暂存处),以及一些不适用的场景(比如用来存放数据库连接的实例)。如果我们在做实现技 术的选型的时候把临时对象池作为了候选之一,那么就应该好好想想它的“个性”是不是符合你的需要。如果真的适合,那么它的特性一定会为你的程序增光添彩, 无论在功能上还是在性能上。而如果它被用在了不恰当的地方,那么就只能适得其反了

加载余下内容▼

相关文章:

;